Does small-scale turbulence in the abyssal ocean force climate variability?

Science / Geosciences

Just as waves on the sea’s surface eventually break on the beach, there are waves in the ocean’s interior, between layers of different densities. These internal waves eventually also break, causing turbulence and mixing the different water layers. This project combines fluid dynamics theory (mathematical models), observations collected in the South Atlantic and computational simulations to test the hypothesis that variations in turbulent mixing due to internal wave breaking in the abyssal ocean control the variability of the lower AMOC cell, the Atlantic Meridional Circulation Cell. AMOC is an interhemispheric ocean circulation pattern that transports heat equivalent to 10,000 times the electricity production generated by the binational Itaipu hydroelectric plant and a volume of water equivalent to 100 times the flow of the Amazon River. AMOC variations are a cause and consequence of planetary climate variability. Therefore, the understanding that this project seeks is crucial to improving predictions of Earth’s climate under the effects of global warming.

Open Calls

Chamada 6